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Abstract. Graphs are commonly used in mathematics to represent some
relationships between items. However, as simple objects, they sometimes
fail to capture all relevant aspects of real-world data. To address this
problem, we generalize them and model interactions over time with mul-
tilayer structure. We build and test several centralities to assess the im-
portance of layers of such structures. In order to showcase the relevance
of this new model with centralities, we give examples on two large-scale
datasets of interactions, involving individuals and flights, and show that
we are able to explain subtle behaviour patterns in both cases.
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1 Introduction

Graphs have been widely used since the first definition of the Konigsberg Bridges
by Euler [9]. Although their formalization and drawing came later [14], graphs
have been constantly challenged and their formalism extended in many ways,
with, among the most common, orientation, labels, and weights for nodes and
links [3], to represents the connections of things in their entirety: friendships,
railroads, communications, etc.

Recently, new formalisms have emerged to encompass the more complex pat-
terns that arise in real-world data. In particular, the multilayer networks [15]
capture multiple families of relationships and entities together. This is useful,
for example, to inspect homophily within groups of documents [23]. However,
multilayer networks show some limitations in fully capturing interactions that
exist over time [21], beyond the dynamic of a graph as a whole. To cope with
many individual time-dependant interactions, stream graphs [16] offer a compre-
hensive formalism to deal with real-world sequences of interactions over time.

In this paper, we are interested in joining both formalisms by proposing the
multilayer stream graph. After briefly reviewing the state of the art, we give its
definition in Section 3, we explore the notion of centrality in Section 3.1, while
applying this model on two datasets in Section 4 before concluding. The key
contributions of this paper are (i) the introduction of multilayer stream graphs
and (ii) the demonstration of its relevance for the detection of central layers.

2 Related Work

We now introduce the concept of multilayer stream graph. To illustrate our
definitions, we will use a toy example of a population of monkeys Fy, Fy, M7, M,
(two females and two males) interacting together.
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Fig. 1: Example of the interactions of a population of monkeys. (a) The simple social
network of monkeys. (b) The multilayer graph between monkeys across places and
relationships (collaborating and fighting in the mountain or in the plain). (¢) The
stream graph describing sequence of interactions between monkeys. We may notice the
frequent interactions between monkeys.

2.1 From graphs to multilayer and stream graphs

A simple graph is a tuple G = (V, E) composed by a set of nodes V' and a set of
edges E C V ® V, where each edge is an unordered pair of two distinct nodes.
The degree of a node v € V d(v) is the number of edges in which v appears:
dv) = {(u,w) € ECV ®V]u=vUw = v}. The density is the probability,
given two nodes, that they are connected: 6(G) = % In Figure la, the
nodes are monkeys: V = {Fy, Fa, M1, M5} and there is a link in E between
two animals if they have been in contact, hence forming G = (V, E). M; is the
monkey with the highest degree. In this example, the density §(G) = %

Multilayer graphs Consider now that the monkeys from Figure la to interact
in different places, such as the mountain or the plain, either through collaboration
or fight.

A multilayer graph [8,15] is a set M = (Var, Ear, V, L), where L is the struc-
ture, a finite set of d different sets, named aspects such that £ = {Lq,...,Lg}.
Each aspect L; contains elements [},...I["" which are named elementary lay-
ers. A layer o is then a combination of elementary layers from each aspect:
a €L =1Ly x...x L. V is the set of nodes and each of them can be present
on any of the different layers. A node on a layer is called a node-layer. The set
of nodes-layers is Vjy C V x L. Each node-layer can be linked to another with
undirected edges, i.e. Epy C Vs ® Viy. The degree of a node-layer is the number
of links in which the node-layer appears. The degree of a node is the number of

links in which the node appears. The density can also be defined for each layer,
_ 2| B |
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Figure 1b represents our monkeys example in a multilayer context.The struc-

ture £ is made of two aspects: the place and the type of interaction. Consider the
layer (mountain,collaboration) in which a link between M; and F, means that the
two animals collaborated in the mountain. The layer (mountain,collaboration)

hence generalized over the multilayer network: §(M)
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and (plain,collaboration) show higher density than the other layers. A possible
interpretation is that this group of monkeys interactions are more collaboration
based. Also, Fs,(mountain,collaboration) and My, (plain,collaboration) are the
two key individuals with the highest collaboration degree.

Stream graphs However, this does not take into account the temporal nature
of interactions, i.e. when and for how long they occur. For example, fights or
collaborations could be short or long depending on the circumstances, and occur
frequently or not. This information is crucial for finer grained understanding.

A stream graph [16] is a tuple S = (T, W, V, E) where T is the time interval
of study, V is the set of nodes. The stream graph model does not require a
discrete definition of time. A stream graph considers a set of time instants in a
continuous manner.

The time-nodes set W C T x V describes the existence of nodes depending
on time: (t,v) € W means that the node v appears at time instant ¢. The set
E CT xV xV contain all the links and their time instants of existence. Given
nodes v and v, we call T,, = {¢, (t,u) € E} the set of time instants at which u
appears, and Ty, = {t,(t,uv) € E} the set of time instants at which the link
(u,v) appears.

Several notions have been designed in [16] that extend the model of classi-
cal graphs. For example, links may either last a certain amount of time, or be
instantaneous (leading to a density equal to zero).

The number of links of a set of links is formally define as the duration of the
links divided by the length of T'. The degree of one node is the number of links of
the set of links attached to the node. The density §(S) is the probability, given
two nodes and a time instant, that a link exists between the two nodes:

2. ||
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Figure 1c provides a new distinctive look at the interactions happening be-
tween the individuals over 10 units of time. M7 is the node with the highest de-
gree of value 0.55. We can also observe that F} and F, met twice shortly. F} and

M, are the first to meet. The density of the stream graph is §(S) = 20%2‘3 ~ 0.06.

2.2 Temporality, multiple layers, and centrality

Now that we have introduced both the multilayer graph and stream graph mod-
els, let us briefly review prior works relevant to both temporal and multilayer
approaches.

We may first be interested by the dynamics in multilayer networks [1,2,7,11,
15,18,20,21]. In temporal multilayer networks, one goal is often to identify com-
munity structures [1,2,18], which is not the task we are focusing on this paper.
However, to model such networks, Kiveld et al. [15] suggest that temporality is
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only an aspect of the multilayer networks that could decompose the multilayer
network like any other aspect. The same approach is taken by Pilosof et al. [20].
Nonetheless, unlike any aspect, time is submitted to order. Moreover, these anal-
yses only consider juxtaposed time-frames as separated networks. Considering
the changes of topologies in an overall graph is however relevant for the study
of spreading processes [7,11], which demonstrated the dependency on spreading
from layers coupling. These works also point out how the evolution of centrality
is key to studying the network [24], and isolating nodes of interest, such as in
citation networks [21].

As of heterogeneity in stream graphs, we may first bring forward the A-
analysis [16], which provides a way of studying interactions at multiple time
scales; it may be regarded as a specific case of multilayer. Some approaches are
more hybrid between the two. Vaiana et al. [26] are the first to bring a hybrid
model between dynamic multilayer and temporal stream of links to capture
different functional networks in the brain, but they mostly use the multilayer
dynamic approach and introduced a unifying definition as a future work, which
is in line with our contribution.

Both dynamic multilayer graph models or stream graphs would work with
temporal data, however each imposes a specific point of view on the data. Each
time frame in a dynamic multilayer network imposes to choose a time granularity,
the choosing of which is not trivial. In addition, it also implies some distortions:
either parts of links duration would be excluded (outside of the time frame) or a
link would be considered as present over the whole frame considered. Multilayer
stream-graphs, our proposed model, are completely agnostic to these issues, since
they take each link in its own duration. The focus of this model is not on a whole
graph interacting, but closer to the data, on a series of interaction events, no
matter the nodes they attach. The structure of the resulting graph is only a
consequence of these interactions.

3 Multilayer stream graph

Let us now introduce our object. A multilayer stream graph Sp; is a tuple
(T, V, L, L, Vg, War, Ear), with T a time interval, V' a set of nodes, and £ =
{£;}4_, a set of aspects. For a given i < d, € € L; is called an elementary layer;
finally, we call a layer an element of L = £ X Lo X ... X L4. We denote by
Vi €V x L the set of node layers, and by Wy, C T x V x L the set of time-
nodes-layers. In other words, (u, a) € Vj; means that node w is present in layer «,
and (¢, u, &) € Wi means that node u is present at time ¢ in layer oe. Lyy C I x L
is the set of time-layers, where I is the set of intervals included in T'. (¢, «) in Ly,
means that layer « exists at time ¢. Finally, we denote by Eyy CT x Vi @ Vi
the set of interactions. In other words, (¢, (u, @), (v,a’)) € Ej; means that node
u in layer o and node v in layer o' interacted at time ¢.

We illustrate this object in Figure 1b. Notice that (¢, ((u, ), (v,0))) € Em
implies that (¢, ua) € Wy and (¢, v, 8) € Wyy. Similarly, (¢,u,«) € Wy implies
that (¢, ) € L. In other words, a link between two nodes-layers can only exist
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Fig.2: (a) This example follows the colors of Figure 1b: in green, (moun-
tain,collaboration); (Fight,mountain), in blue; (collaboration, plain), in yellow;
and t(fight,plain), in red. This example captures 13 interactions of the 4 mon-
keys in a time frame [0, 20]. (b) The visualization of the much larger multilayer
stream graph for dataset HighSchool composed of 36732 links involving 329
students over the course of 5 days.

if the two nodes-layers exist at this time, and nodes-layers can only be present
when layers exist.

In the rest of this paper, for the sake of defining the most elementary object
possible, we consider multilayer stream graphs to be undirected, unweighted and
unlabeled. We show that even this elementary model is relevant for real-world
data analysis. We discuss some possible extensions in Section 5.

Let us now start by defining various extractions and projections of multilayer
stream graphs.

The induced multilayer graph by the set 7 C T is a multilayer graph M (Sa) =
(Var,r, Earr, V, L) which gathers all the layers, nodes-layers and links exist-
ing over time 7. In this graph, Viy;r = {v € V|3t € 7,(t,v) € Vy} and
Eyg = {(v,a),(w,8)) € (VxL)® (VxL)|3t € 7,v,awf) € Ep}.
In other words, it is the graph where nodes are elements of V' and one puts a
link between two nodes if and only if they have interacted over a duration 7.

Notice that when 7 = ¢, this induced graph is called the multilayer graph at
time t. Figure 1b shows the multilayer graph induced by T for the multilayer
stream graph in Figure 2a.

Interlayer links are often used to model transit in a multilayer, such as the
underground path to change between two lines of a subway station [15]. Given
a pair of layers o, 5 € L1 X ... X Ly, the interlayer stream graph is the bipartite
stream graph S(®8) = (T8 Vel Wb ped) with T = {t : I(t,u,a) €
Wi, 3(t,u, 8) € Wyr,u € V} the interval of time in which « and S appear
simultaneously. V% = (V x {a, 8}) N Vs is the set of node-layers of the multi-
layer stream graph restricted to o and . W8 = (T8 x V)N W), describes
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all their intervals of existence. Finally, E*# = {(t, (u,a)(v,8)) € En : t €
T8, u,v € V} is the set of interactions between layers a and f3.

For a given layer «, we define the intralayer stream graph simply as S(«, @),
i.e. the interlayer stream graph between layer a and «. We denote it by S¢ =
(T, V¥, We, E*). For example, Figure 2a captures only intralayer interactions.

The aggregated stream graph Sa(Sy) = (T,V,Wa, E4) is the stream graph
where all layer information has been removed. As such, it has the same interval
of study T as Sps. Its nodes are the same as in Sy (the set V). Their times
of existence are the union of their times of existence on the different layers:
Ty = Uaer Tu,a and Wa = J, o Tu x {u}. An edge exists between two nodes
of S4(Sn) if it exists a the same time between two correspondent node-layers
of Sy, ie. Ea = {(t,u,v)|3(a, B) € L?, (¢, (u,), (v,8)) € Ep}. For example,
Figure 1c is the aggregated stream graph obtained by superimposing all layers
in Figure 2a.

The degree of a node in a multilayer stream graph is the number of links (as
defined just before) in which the node appears, i.e. d(u) = [{(t, (u,a)(v,B)) €
Ey :t € Tyv € V,a,8 € L}|. Similarly, the degree of a node-layer (u,«) is
simply d(u,a) = [{(t, (u,a)(v,8)) € Epr:t € T, (v, 5) € L}|.

In Figure 2a, we can notice that females interact much more in the mountain
than in the plain,and the contrary for the males. We can spot that the longest
interaction, between F} and M, takes place in the plain and lasts 3 days. The
node with the highest degree is M; (d = 7) and the node-layer with the highest
degree is (My, (plain,collaboration)).

The density of a multilayer stream graph is the probability, when one takes
a random time ¢ and two random node-layers (u,«) and (v, ) that the link

1T (w0 (0,8
. ) _ (wa),(v,8)ER
(ta (ua 04)7 (’U, B)) 1S 1n EM J(SM) - . a;y ﬁ)‘Tl(v:MmT(vﬁﬂ .
In Figure 2a, the density of the multilayer stream graph is: §(Sys) = % ~

0.17. Notice that in comparison, the density of the aggregated stream graph is
0(5) = 2(1)16 ~ 0.14, and the one of the aggregated graph is §(G) = % = %
Moreover, this definition of density can be readily applied and adapted to
specific cases. For example, the interlayer density of interactions between two
layers o and S is nothing but §(Sas (e, 8)), the density of the interlayer stream
graph. The denominator sum can also be modified to take into account specific
aspects of the data, for example by summing on (u, «), (v, @) if interlayer links

are not allowed, among others.

3.1 Centralities

One key application on real-world data is the analysis and detection of important
nodes, i.e. that are central. Many notions of centrality coexist for graphs [4,
5], multilayer graphs [12,22] and stream graphs [6, 16] alike. As of today, no
consensus emerges on a global centrality notion, as they all capture different
notions of importance [13].



Introducing multilayer stream graphs and layer centralities 7

In this section, we develop upon the formalism introduced in Section 3 and
introduce two centrality definitions on multilayer stream graphs extending from
entanglement [22,23] and inspired by eigenvector centrality [13], taking into
account the multifaceted nature of the object while remaining simply explainable
and computationally efficient.

As a prerequisite, let us extend the definition of paths to multilayer streams
graphs. A path from (¢,u, @) to (t',v, 3) is a sequence (ti, (u;, o), (vi, Bi))E_o of
elements of Fj; such that (ug, ag) = (u, @), (vk,ax) = (v, 8), to > t, tr, <t and
for all i = 0..k, (wit1, 2iy1) = (v, Bi) and t;41 > t;. A common variant, defined
in [16], are y-paths, i.e. paths for which the condition ¢;; > t; becomes t; 1 >
t; + 7. In other words, in y-paths traversing an edge costs . This is especially
useful for modelling transportation networks, as we will see in Section 4.

Let us now introduce the new notions of centrality, that we call superimposed
layer centrality and juxtaposed layer centrality. Both aim at giving an intuition
of the importance of layers in the multiplex stream graph.

A group of layers is superimposed if each node can be present on each layer
at any time (also referred as multiplex networks [15]). In other words, saying
that two layers are superimposed means that it is possible to have interlayer
links between those layers. This typically corresponds to layers describing diverse
types of relationships across the same set of nodes. For instance, in Figure 2a,
the layers (mountain,collaboration) and (mountain,fight) are superimposed.

Given a superimposed multilayer stream graph and a time ¢ € T', for all nodes
u € V and all layers c;—q. 1, let us compute X, (¢,u) as the probability that a
random walker starting from node u at time ¢ will cross a link involving layer
a;. One then obtains a |V|xk matrix corresponding to the relative importance
of each layer «; for each node u.

We define the superimposed layer centrality as the maximal eigenvalue of
Y. x, the matrix of covariances of all random walkers. In X x, each term of the
matrix is computed as Xo, o, = E[(Xa, — E[Xa,])(Xo, — E[Xq,])]. Intuitively,
the eigenvalues of X x give a ranking of the layers by decreasing importance. The
maximal eigenvalue corresponds to the maximal variance for a linear combination
of X,, corresponding to the eigenvector of Xx.

However, not all datasets contain meaningful superimposed layers. To this
end, we define another notion of centrality, the juxtaposed layer centrality.

A group of layers is juztaposed if each node can only be present in one layer.
This is typically the case for non-superposed states: age, gender, class number,
etc. Notice however that the layer associated to each node can in principle change
over time. For example if one were to consider the aspect age={baby, child,
adolescent, adult, elderly} in Figure 2a, the layers (child,mountain,collaboration)
and (adult,mountain,collaboration) are juxtaposed. In this case, studying the
relations between layers is particularly relevant.

We then consider the interlayer density matrix A, i.e for each pair 4,j of
layers, one computes the interlayer density §(Sns (v, o))t

! With the case where i = j simply returns the intralayer density 6(Sas(c))
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Fig. 3: (a) Density in multilayer stream graph computed for each day, inside the
layers of men, the layers of women, between the two groups of layers and inside
the whole group. (b) The matrix of the log of densities between the classes. (c)
Score of centrality for the different layers.

From the multilayer stream graph displayed in Figure 2a, we can alternatively
consider two layers of: male interactions, and female interactions. The matrix of

densities for these layers (male and female) is (}ﬁ 1%) One can notice that in

this (toy) example, interactions are stronger in the males than in the females,
and that the female and the male interact less with their opposite gender.

The juztaposed layer centrality then correspond for each layer to its entry in
the eigenvector associated with the maximum eigenvalue of A. Notice that in
both cases, the Perron-Frobenius theorem [10,19] states that a irreducible non-
negative matrix has a maximum positive eigenvalue with an eigenspace of range
1. In our case, we know that A is non-negative by definition of the densities
and irreducible unless we can share the layers into different groups that do not
interact together.

4 Results

We now demonstrate multilayer stream graphs for the analysis of two real-world
datasets. All implementations are available to the public?.

4.1 Data

The first one records interactions among high-school students [17]. Each student
is associated to a class, and interactions can be of three kinds: (i) face-to-face,
(ii) self-declared friendship, and (iii) Facebook friendship. Notice that only (i) is
time-dependent, (ii) is directed, and (iii) is undirected.

This dataset comprises of 36, 732 links involving 329 students over the course
of 5 days. Superimposed aspects are the interaction type (face-to-face, friendship,
Facebook friendship), whereas juztaposed aspects are the gender of each student
(female, male, or undefined) and the class. The (relatively) small size of this

% https://github.com/TiphaineV/multiplex-streams/src/visualisation
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dataset makes it visualizable, see Figure 2b. We will hereafter refer to this dataset
as HighSchool.

The second one documents all domestic flights in the United States since
1987 [25]. Since the whole dataset is too large to be efficiently processed, we
focus instead on a longitudinal study across the years, using all the flights in
January 1988, 1995, 2010 and 2019.

Each of these datasets involves 346 airports and contains roughly 500000
flights. There are no juztaposed aspects, however the company operating the
flight is a natural superimposed aspect. There is a maximum of 17 companies.
Finally, while the stream graph is too large to be visualized, we display the
induced graph over a map of the United States in Figure 4a. We will hereafter
refer to this dataset as US-Flights.

4.2 Experiments

We now devise two experiments in order to shed light into some patterns present
in the two datasets described in Section 4.1.

The intrinsic structure of the two datasets allow us to demonstrate the rel-
evance of both notions of centrality described in Section 3.1. We show that our
formalism is able to shed some light on patterns in both datasets, which in turn
serves as a proof of concept for our work.

The HighSchool dataset features gender information about the participants.
In this context, we investigate the interaction patterns between the participants,
taking into account this information.

Let us consider the multilayer stream graph describing the interactions among
students, the layers here being the gender ({M, F}? and the class label ({M P,
MP*1,MP*2, PSI*, PC, PC*,2BI01,2BI102,2BI03}), corresponding to usual
French names for such schools.

Regarding gender, let us consider the multilayer stream graph induced by
every 24 hours. We obtain 5 such stream graphs, corresponding to the 5 days
of the dataset recording. On each daily multilayer stream graph, we compute
the inter- and intralayer densities, as well as the graph density (i.e. discarding
all gender and temporal information). We show the result in Figure 3. Several
conclusions can be observed: first of all, the graph density (legend “global”)
does not adequately capture the subtleties in the data. It averages the intra-
and inter- densities, that are in reality following two different modes; in other
words, individuals interact more with individuals of the same gender as them.

We also study the densities of interactions between the different classes. Fig-
ure 3a shows the density matrix for each class. For readability, it displays the
absolute value of the logarithm of the densities, as it makes blocks more ap-
parent. While as for gender, the intra-density is higher than the inter-density,
we can discern larger blocks grouping layers together: {M P, M P*1, M P*2}
{2BI01,2B102,2BI03}. These blocks correspond to specialty topics, as M P

3 The dataset also contains a few *U’, for Undefined, that corresponds to interactions
with teachers. We do not consider them in the rest of this work.



10 Pimprenelle Parmentier et al.

corresponds to mathematics and physics, while BIO corresponds to biology. This
result is intuitive, and so this serves as an argument that our model captures
the interaction subtleties in the data.

Figure 3 shows the superimposed layer centrality values for each class, as
defined in Section 3.1.

2BI0O3 and M P*2 are the most central: we can see that they are the most
central among two clusters of layers, regrouping the M P classes and the BIO
classes. In terms of data analysis, this makes sense since these two groups corre-
spond to common speciality subdivisions in the French system: favouring Biology
(BIO) or Mathematics and Physics (MP). Notice finally that the PC' (Physics
and Chemistry) layers in this school are the least central; one can then assume
that the students in these classes interact less in time with other classes, which
comes as a surprise considering that one speciality, Physics, is shared with the
M P students.

Notice however that the HighSchool dataset does not have juxtaposed layers
that we can study. In order to demonstrate the interest of the juxtaposed layer
centrality, we focus instead on the US-Flights dataset.

On this dataset, we show in Figure 4 the correlation between the probability
of coverage by a random walker and the layer centrality value we compute. For
each company a corresponding to each layer, and for a given ¢t > tg, we compute
the random variable X (v,t) = 3=, (4.),(v.0))€Eay (Emaz —t). In other words, the
probability to take a plane decrease with time, until it reaches 0 after a certain
amount of time.

Given these probabilities, we compute then the co-variance matrix of those
variables, as explained in Section 3.1. The eigenvalues of the covariance matrix
corresponds to the centrality score. Notice that, however, just like in graphs, the
centrality scores themselves mean little, as it is their relative order that carries
importance.

In order to assess the usefulness of our metric, we show in Figure 4 the rank of
each company compared to the relative coverage of each company by a random
(temporal) walker. In the four subdatasets that we consider, we can see that our
centrality is well correlated to the random walker coverage, though however this
is especially true for the older subdatasets (1988 and 1995).

We notice that the layer centrality fits less and less with the one of random
walker over time. This is due to the fact that the score of each layer in the
eigenvector tends to be the same. This means that a lot of companies tends to
look like the other ones. We can gess that with the improvement of the study
of the market, the carriers have found what are the more interesting routes and
concentrates on the same ones. The number of flight has increased a lot (436,951
per month in 1988 to 583,986 in 2019) but probably on the most popular routes
rather than to create new connections.
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(a) US-flights  (b) Jan. 1988  (c) Jan. 1995  (d) Jan. 2010  (e) Jan. 2019

Fig.4: (a) Induced multilayer graph of the US companies flights. The size of the
nodes reflect of their PageRank. (b-e) Comparison between Rank by coverage
and juxtaposed layer rank of companies for the 4 subdatasets extracted from
US-Flights. In red, the function y = x, corresponding to a perfect correlation.

5 Conclusion

In this paper, we devise a new formalism that bridges the gap between two re-
cent advances in the state-of-the-art: multilayer graphs and stream graphs. We
propose a new framework that generalizes both objects, and define some ele-
mentary notions on it, in order to show its relevance. Furthermore, we introduce
two notions of layer centrality that capture the relative importance of layers
over time. We experiment on two interaction datasets, of individual contacts
and flight information, and show the relevance of the formalism and centralities
at capturing subtle patterns in the data.

This work is intended only as a validation for the multilayer stream graph
model, and as such it opens numerous perspectives. The first of them relates
to the formalism itself: while the model we define is straightforwardly usable, it
can be extended in many ways. While some of these are straightforward, such
as directionality, others require more thorough work, such as ponderation, or
proper label utilization.

Another interesting axis depends on the data itself. W many examples of
multilayer stream graphs exist in real life, all the relevant information is not
typically captured in datasets, typically because the current models cannot use
the extra information. We hope this paper serves as a wider call to researchers
of many disciplines, to use our model and tailor it to their needs.
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